

Network analysis of DNA Repair phenotype using database of nano-biomimetic based single cell assay

Abolfazl Arab

Nano-biomimetic student, Life Science Engineering, University of Tehran

Advisors:

Dr. Faramarz Mehrnejad Dr. Sama Goliaei

BIOLOGY IN SINGLE-CELL RESOLUTION

How and why technology enable high-throughput bio-assays in single cell resolution?

µ-TAS concept: miniaturized Total Analysis System

- If the device in question had characteristic dimensions on the microscale.
- A system that could automatically carry out all the functions required for analysis.
 - Sampling
 - Transport of the sample
 - Any sample preparation steps
 - Ex. chemical reactions, separations, etc.
 - Detection

Single-Cell Analysis Using Droplet Microfluidics

Macosko, E. et al. (2015)

Scaling of scRNA-seq experiments

SINGLE CELL DNA-REPAIR MEASUREMENT

NETWORK ANALYSIS OF DNA REPAIR PHENOTYPE |

NGS & droplet microfluidic platforms enable high throughput measurement of biochemical phenotypes in single cells.

Method

Experimental molecular assay

Nucleic Acids Research

Published online 14 April 2020

Nucleic Acids Research, 2020, Vol. 48, No. 10 e59 doi: 10.1093/nar/gkaa240

Simultaneous measurement of biochemical phenotypes and gene expression in single cells

Amanda L. Richer^{1,2}, Kent A. Riemondy³, Lakotah Hardie¹ and Jay R. Hesselberth^{3,2,3,*}

¹Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA, ²Molecular Biology Program and ³RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA

Received January 23, 2020; Revised March 16, 2020; Editorial Decision March 31, 2020; Accepted April 01, 2020

Dataset

Several single-cell RNA-seq experiments

Proof of concept

Nucleic-based **nano-biomimetic** probes are powerful paradigm to design novel molecular assays

INTRODUCTION

Mimic DNA repair enzyme-substrate reaction inside droplet

- An external synthetic hairpin with a single lesion damage at certain position included into droplets using the same channel which cell loaded to the microfluidic chip
- This hairpin *mimic* substrate of DNA repair enzymes which released from the cell during indroplet lysis
- Overall, this protocol made it possible to simply measure amount of enzymatic activity (i.e., number of strand incisions) alongside with mRNA abundance in single cell resolution

Measuring DNA-repair enzyme activity in single-cell resolution

Mixing and time series experiment

- KO cells were identified if counts at the repair site (position 44 for ribonucleotide and position 45 for uracil)
- After the emulsion was created, the sample was separated into 3 tubes and incubated for 15, 30, or 60 min at 37 ℃ prior to reverse transcription at 53 ℃.
- 800-1,500 cells were captured at each timepoint.
- DNA repair measurements determine *cell types* in a cell mixing experiment.
- Authors showed it fails to use UNG and RNASEH2C mRNA expression to determine cell types, but estimated repair activity clearly assign cell-types.

What else we can interpret from this experiment?

Differential expression analysis Pathway enrichment analysis Gene regulatory network analysis

Assess HAP1 cell line with Knock-out genes

Disease

Engineered

Disease Subtype Chronic Myelogenous Leukemia (CML)

Lineage Engineered Blood

Lineage Subtype CML

> **Source** Horizon Discovery

Gender

TM Male

▼ <u>RNASEH2C</u> KO

Ribonuclease H2 Subunit C

• 164 amino acids

<u>• UNG</u> ко

Uracil DNA Glycosylase

• 313 amino acids

Synthetic Hairpins as the mimic of DNA repair enzyme substrate

RNASEH2C

Ribonuclease H2 Subunit C

Uracil DNA Glycosylase

Single cell DNA-repair measurement

INTRODUCTION Single cell DNA-repair measurement And Section 2 and Section

UNG - Uracil DNA Glycosylase
Belongs to the uracil-DNA glycosylase (UDG) superfamily
Excises uracil residues from the DNA which can arise as a result of misincorporation of dUMP residues by DNA polymerase or due to deamination of cytosine;
UNG is the major uracil-DNA glycosylase in mammalian cells and is involved in both

Error-free base excision repair of genomic uracil
Mutagenic uracil-processing at the antibody genes.

15

• The regulation of UNG in these different processes is currently not well understood.

NETWORK ANALYSIS OF DNA REPAIR PHENOTYPE | 16

INTRODUCTION

NETWORK ANALYSIS OF DNA REPAIR PHENOTYPE | 15

RNAseH2C - Ribonuclease H2 Subunit C

• Non catalytic subunit of RNase H2, an endonuclease that specifically **degrades the RNA of**

RNA:DNA hybrids and mediates the excision of single ribonucleotides from DNA:RNA duplexes.

- Participates in DNA replication, possibly by mediating the removal of lagging-strand Okazaki fragment RNA primers.
- Ribonucleotides are incorporated into DNA by the replicative DNA polymerases at frequencies of about <u>2 per kb</u> which makes them by far the **most abundant form of potential DNA damage in** the cell.
- Their removal is essential for restoring a stable intact chromosome.

UNG - Uracil DNA Glycosylase

- Belongs to the uracil-DNA glycosylase (UDG) superfamily
- Excises uracil residues from the DNA which can arise as a result of misincorporation of **dUMP**

residues by DNA polymerase or due to deamination of cytosine;

- UNG is the major **uracil-DNA glycosylase** in mammalian cells and is involved in both
 - Error-free base excision repair of genomic uracil
 - Mutagenic uracil-processing at the antibody genes.
- The regulation of UNG in these different processes is currently not well understood.

Thesis Overview

Main Question:	Main Question How cellular Gave Regulatory Network (SRN) involved in DNA repair phenotype while cells harpting?
Methods:	<section-header></section-header>
Workflows:	Analysis workflow:
Results:	Results:

Main Question

How cellular Gene Regulatory Network (GRN) involved in DNA repair phenotype while cells face nano-biomimetic DNA-damaged hairpins?

Methods:

Reanalyze dataset introduced in *Richer et. al (2020)* paper

Apply **network analysis** and **statical interference** tools Explore simultaneous enzyme activity and mRNA expression data in single cell resolution Related **public datasets** to validate and expand findings

STRING

Protein-Protein Interaction (PPI) network information

MSigDB Molecular Signatures Database

Results:

Basic Analysis

Alignment task

Preprocessing

- Differential analysis
- > Enrichment analysis
- Network analysis

Alignment task

............................

Human genome

Size selected cDNA for mRNA library

Size selected hairpins for repair product measurement

ENCODE, the Encyclopedia **Of DNA Elements**

A project to identify all functional elements in the human genome sequence.

Aligner algorithm

A workflow for pre-processing single cell RNA-seq data.

Counts matrices + metadata

AnnData object

- - TTTTTT-

Hairpin (sudo-substrate)

Hairpin sequences in **Fasta** format used to enable alignment task.

Aligner algorithm

Snakemake

hesselberthlab / sc-haircut

Snakemake pipeline to count functional data

Cell × hairpin matrix

cell x

6

ene

matrix

•••••

Approximating and partitioning complex manifolds

a, Complex, curved surfaces can be well approximated by neighborhood graphs. A simple graph connects each point with its *k* closest neighbors (kNN graph). As more points and regions are measured, the complex structure of the object can be revealed.

b, The elephant graph (in **a**) is clustered using the **Leiden clustering algorithm** (resolution r = 0.5). The resulting clusters are shown as colors on the 3D model (top) and *t*-SNE embedding (bottom) of the data.

c, Clustering resolution is arbitrary. Similar to **b**, the plots show clustering with increased resolution (r = 3). The clusters are smaller but capture equally valid anatomical elements.

b

Preprocessing

15' -> 1187 30' -> 1301 60' -> 2377

Total cells: 4865

(left)

(right)

Define binary label for repair phenotypes

What are labels representing?

Uracil-44 count:

high	High dU count, high dU repair phenotype
low	Low dU count, low dU repair phenotype
none	UNG ^{KO} cells

RNASEH2C^{KO} cells fail to incise ribonucleotide damage

riboG-45 count:

high	High rG count, high rG repair phenotype	
low	Low rG count, low rG repair phenotype	fc
none	RNASEH2C ^{KO} cells	u

UNG^{KO} cells fail to incise uracil damage

Comparison Analysis

- > Alignment task
- Preprocessing
- > Differential analysis
- Enrichment analysis
- Network analysis

The model formula and design matrices

• We aim to test and report multiple comparisons in our dataset:

Variables:

- dU (High / Low / None)
- rG (High / Low / None)
- time (15, 30, 60)

PCA - removeBatchEffect

15

30

60

Ribonucleotide repair phenotype

???

Model design: \sim rG + time + rG:time

- rG high vs. rG low in 15'
- rG high vs. rG low in 30'
- rG high vs. rG low in 60'
- rG high in 60' vs. rG high in 15'

Ribonucleotide repair phenotype

???

Model design: ~rG + time + rG:time

- rG high vs. rG low in 15'
- rG high vs. rG low in 30'
- rG high vs. rG low in 60'
- rG high in 60' vs. rG high in 15'

PCA - removeBatchEffect

Model design: ~dU + time + dU:time

- dU high vs. dU low in 15'
- dU high vs. dU low in 30'
- dU high vs. dU low in 60'
- dU high in 60' vs. dU high in 15'

Model design: ~dU + time + dU:time

- dU high vs. dU low in 15'
- dU high vs. dU low in 30'
- dU high vs. dU low in 60'
- dU high in 60' vs. dU high in 15'

Long list of investigated genes

PPI network of Diff-KO genes Public expressed datasets genes DNA Damage Data-driven and Repair pathways

Manually select altered genes

Find genes with expression alteration over time

Network analysis

mRNA expression of cells repair rG-Damaged hairpin (UNG KO Cells)

mRNA expression of cells repair dU-Damaged hairpin (RNASEH2C KO Cells)

Network and Graph Analysis

- Alignment task
- Preprocessing
- Differential analysis
- > Enrichment analysis
- Network analysis

GRN - Gene Regulatory Networks

A lightning-fast python implementation of the SCENIC pipeline (**Single-Cell rEgulatory Network Inference and Clustering**) Enables biologists to infer from scRNA-seq data

Transcription factors (TFs)

Gene Regulatory Networks (GRNs)

Cell types

pySCENIC workflow

1. Sets of genes that are coexpressed with TFs are identified using GENIE3

2. Since the **GENIE3** modules are only based on coexpression, they may include many **false positives** and indirect targets. \Rightarrow To identify putative direct-binding targets, each coexpression module is subjected to *cis*-regulatory motif analysis using **RcisTarget**.

3. Estimate AUC score as regulons activity representation among cells.

GRN analysis results

Build and analyze context-specific networks

- 1. Make the large context-specific GRN network
 - Number of vertices in the graph: 18,292
 - Number of edges in the graph 4,652,523
- 2. Create sub-networks contain nodes from PPI network of KO genes
 - 1. UNG
 - Number of vertices in the graph: 447
 - Number of edges in the graph 48,703
 - 2. RNASEH2C
 - Number of vertices in the graph: 281
 - Number of edges in the graph 3,482

Different scenarios to explore KO subnetworks

Scenario 1: short distance (=1) from **UNG**

Filter: Weight > 0.002

Network analysis

CBX3; Chromobox protein homolog 3

AUC, regulon activity score

Network analysis

Different scenarios to explore KO subnetworks

Network analysis

Network analysis

Scenario 4: RNASEH2C sub-network filtered by TFs with dynamic regulon activity

Filters:

DDIT3;

DNA

Network analysis

damageinducible transcript 3 protein

AUC, regulon activity score

SIX2; Homeobox protein SIX2

AUC, regulon activity score

Filter KO sub-network by altered TFs' PPI network

RESULTS

UNG sub-network filtered by altered TFs' PPI network

Filters:

- Query TFs with dynamic and their PPI network regulon activity:
 - 'SIX2','DDIT3', 'CBX3'
- 2. Distance=1 from KO gene

Node name with Maximum degree: 'TFDP1', 'BRCA1', 'TP53', 'XRCC4', 'TBP'

ATM pathway Activation of NOXA and translocation to mitochondria Activation of BH3-only proteins Double-strand break repair BRCA1, BRCA2 and ATR roles in cancer susceptibility CARM1 and regulation of the estrogen receptor Cell cycle: G2/M checkpoint Cell cycle: G1/S checkpoint

Network analysis

RNASEH2C sub-network filtered by altered TFs' PPI network

Filters:

- Query TFs with dynamic and their PPI network regulon activity:
 - 'SIX2','DDIT3', 'CBX3'
- 2. Distance=1 or 2 from KO gene

Node name with Maximum degree: 'TRAPPC5', 'RNASEH1', 'FEN1', 'CCNB2', 'RNASEH2C', 'ADAR', 'SAMHD1', 'RNASEH2B', 'MRTO4', 'CCNB1', 'RNASEH2A', 'OARD1'

DNA replication

- Cyclin A/B1-associated events during G2/M transition
- Control of cell cycle and breast tumor growth by estrogen-responsive protein Efp
- FOXM1 transcription factor network
- G2/M checkpoints
- MicroRNA regulation of DNA damage response

2019

BioPlanet

CONCLUSIONS

- Nano-bio-mimetic DNA damaged hairpins (DNA repair enzyme substrate) induce alterations in cellular gene regulatory network through changing some TF activities, and gene expression over time.
- We observed CCNB1 over-represented in cells with high dU repair at 60' although it's opposite (overrepresented in cells with low phenotype) in rG repair and earlier time repairing dU.
- It suggests potential dynamics of cell cycle due to the presence of DNA damage stimulus.

- RNASEH2C^{KO} Cells with high dU-repair might forbidden to replicate through a cell cycle check point. On the other hand, rG damage might skip the check point.
- Our analysis suggests SIX2 and DDIT3 TFs' activity increase by time due to the stimulus.
- CBX3 is a TF with high centrality in the main context-specific network and subnetworks. It seems its activity decrease by time due to the stimulus.